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Abstract 22 

 Temperate rainforest soils of the Pacific Northwest are often carbon (C) rich and encompass a wide 23 

range in fertility reflecting varying nitrogen (N) and phosphorus (P) availability.  Soil resource stoichiometry 24 

(C:N:P) may provide an effective measure of site nutrient status and help refine species-dependent patterns 25 

in forest productivity across edaphic gradients.  We described the nature of soil organic matter for mineral 26 

soil and forest floor substrates across very wet (perhumid) rainforest sites of southwestern Vancouver 27 

Island (Canada), and employed soil element ratios as covariates in a long-term planting density trial to test 28 

their utility in defining basal area growth response of four conifer species.  There were strong positive 29 

correlations in mineral soil C, N and organic P (Po) concentrations, and close alignment in C:N and C:Po both 30 

among and between substrates.  Stand basal area after five decades was best reflected by soil C:N but 31 

included a significant species-soil interaction.  The conifers with ectomycorrhizal fungi had diverging growth 32 

responses displaying either competitive (Picea sitchensis) or stress-tolerant (Tsuga heterophylla, 33 

Pseudotsuga menziesii) attributes, in contrast to a more generalist response by an arbuscular mycorrhizal 34 

tree (Thuja plicata).  Despite the consistent patterns in organic matter quality we found no evidence via 35 

foliar nutrition for increased P availability with declining element ratios as we did for N.  The often high C:Po 36 

ratios (as much as 3000) of these soils may reflect a stronger immobilization sink for P than N, which, along 37 

with ongoing sorption of PO4
-, could limit the utility of C:Po or N:Po to adequately reflect P supply.  The 38 

dynamics and availability of soil P to trees, particularly as Po, deserves greater attention as many perhumid 39 

rainforests were co-limited by N and P, or, in some stands, possibly P alone.   40 

Keywords: resource stoichiometry; temperate rainforest; soil organic matter; organic phosphorus; soil C:N 41 

ratio; ectomycorrhizal conifers 42 

  43 
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1 Introduction 44 

 One of the largest global expanses of temperate rainforest (approximately 25 million ha) is located 45 

along the Pacific coast of northwestern North America (DellaSala et al., 2011), an area renowned for 46 

towering, conifer-dominated forests of extraordinary productivity and longevity (Waring and Franklin, 1979; 47 

Smithwick et al., 2002; Keith et al., 2009).  Carpenter et al. (2014) highlighted the high diversity of soil types 48 

across this region and some key attributes related to soil carbon (C), nitrogen (N), and phosphorus (P) status 49 

of these forests.  Most notably, temperate rainforests often have substantial accumulations of organic 50 

matter at the soil surface (forest floors) and in mineral horizons that rank among the highest in global soil C 51 

stocks (Sun et al., 2004; Homann et al., 2005; McNicol et al., 2019).  Secondly, the N regime in certain soils 52 

can be extremely rich which, along with ample moisture, underpins the tremendous productivity of many 53 

forest stands (Perakis et al., 2006; Littke et al., 2011; Kranabetter et al., 2015).  In contrast, areas with low 54 

relief and imperfect drainage can have deep organic soils and scrubby, less productive forests with very 55 

limited N availability (Sajedi et al., 2012; Kranabetter et al., 2013; Bisbing and D’Amore, 2018).  Thirdly, 56 

intensive weathering under high rainfall combined with acidic leachate derived from coniferous vegetation 57 

has accelerated soil podzolization (Singleton and Lavkulich, 1987; Sanborn et al., 2011), resulting in limited 58 

supplies of P in some areas that likely co-limit forest growth (Preston and Trofymow, 2000; Blevins et al., 59 

2006; Mainwaring et al., 2014; Kranabetter et al., 2019).  Temperate rainforests with these combined 60 

attributes in soil organic matter, N and P may lack analogues in forest ecosystems elsewhere (Carpenter et 61 

al., 2014), and consequently a more detailed understanding of soil nutrient limitations and dynamics would 62 

better support land management decisions regarding wood production, global C budgets, and conservation 63 

priorities.   64 

 Resource stoichiometry (C:N:P) of soils may be one avenue in which the combined constraints of N 65 

and P on ecosystem productivity can be effectively evaluated (Zechmeister-Boltenstern et al., 2015; Spohn, 66 

2016).  An essential premise of ecological stoichiometry is that rates of N and P immobilization or 67 
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mineralization in soils are closely linked to microbial biomass stoichiometry (Manzoni et al., 2010; 68 

Mooshammer et al., 2014; Zechmeister-Bolenstern et al., 2015).  Element ratios (C:N and C:P) reach a 69 

threshold where microbes shift from being C-limited to N- or P-limited and consequently the mineralization 70 

and release of nutrients for plant uptake during decomposition should increase with declining C:N or C:P of 71 

soil organic matter (e.g., Saggar et al., 1998; Prescott et al., 2000a; Heuck and Spohn, 2016).  In addition, 72 

N:P ratios of soil and plants can indicate the relative extent of N and P limitations on primary productivity, 73 

as N:P tends to increase in older or well-weathered soils where P constraints might supersede those of N 74 

(Güsewell, 2004; Wardle et al., 2004).  The utility of resource stoichiometry in models of nutrient dynamics 75 

and ecosystem productivity has spurred interest in quantifying these relationships for soil organic matter 76 

across a range of landscapes (Bui and Henderson, 2013; Littke et al., 2014; Van Sundert et al., 2019).  77 

Further details on the nature of soil organic matter across temperate rainforests would contribute to this 78 

comprehensive depiction of global nutrient dynamics (Tipping et al., 2016; Achat et al., 2016). 79 

 Baseline relationships in soil resource stoichiometry and ecosystem productivity should also 80 

consider the interaction of tree species.  Temperate rainforests of the Pacific Northwest are exceptional 81 

because of the prevalence of evergreen conifer species, many of which host ectomycorrhizal fungi (ECM) 82 

(Tsuga, Abies, Picea, Pseudotsuga and Pinus spp.) or, alternatively, arbuscular (ARB) mycorrhiza (Thuja and 83 

Sequoia spp.).  Waring and Franklin (1979) postulated that most deciduous hardwood species were 84 

extirpated from the Pacific Northwest by the early Pleistocene as the climate favoured evergreen trees and 85 

their ability to photosynthesize during fall and winter months instead of through the driest parts of the 86 

growing season.  As a result, interspecific competition and adaptive traits related to soil fertility have arisen 87 

primarily between the coniferous species of this landscape (Lacourse, 2009; Coates et al., 2013), and 88 

exclude, with minor exceptions (Acer, Prunus), the deciduous ARB species that can dominate soils of high 89 

fertility (low C:N) elsewhere (Phillips et al., 2013; Soudzilovskaia et al., 2015; Lin et al., 2017).  It should also 90 

be recognized that tree species, in turn, can influence soil C and nutrient cycling through differences in litter 91 
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(foliar and root) quality and mycorrhizal habit, which could eventually manifest as distinct species-soil 92 

stoichiometry relationships (Prescott, 2002; Augusto et al., 2002; Cools et al., 2014).  Quantifying both the 93 

species response to soil fertility and possible feedback of tree species on soil resources is challenging in 94 

uncontrolled settings and consequently well replicated, long-term field trials may be the best avenue for 95 

better understanding these interactions (Binkley, 1995; Augusto et al., 2002).   96 

 The quintessential rainforests along the outer west coast of British Columbia are classified as 97 

‘perhumid’, with relatively high summer rainfall, cool summers, and transient snowpacks (DellaSala et al., 98 

2011).  In the early 1960’s, the British Columbia Forest Service established a multi-species planting density 99 

trial across several perhumid rainforest sites of southwest Vancouver Island (Omule, 1988).  The study sites 100 

encompassed a considerable range in forest productivity that provided a valuable opportunity to examine 101 

ECM and ARB conifer species growth and nutrition in relation to soil C, N and P stoichiometry.  We follow 102 

the convention of Tipping et al. (2016) in this analysis by utilizing organic P (Po) in stoichiometry 103 

comparisons (rather than total P) to focus more directly on properties of soil organic matter.  In addition, 104 

we present nutrient concentration and stoichiometric ratios for both substrates of the soil profile because 105 

of the typically stark differences in the C density of forest floors compared to mineral soils (e.g., 50 % vs. 5 106 

% C, respectively).  The objectives of our study were to 1) document the range and covariation in C, N and 107 

Po concentrations and element ratios across a variety of sites and between mineral soil and forest floor 108 

substrates; 2) test the utility of soil C:N, C:Po and N:Po ratios as explanatory variables in relation to forest 109 

productivity response; and 3) quantify any divergence in conifer growth response to soil fertility gradients 110 

among ECM (Tsuga, Picea, Pseudotsuga) and ARB (Thuja) tree species.   111 

2 Methods 112 

2.1 Site and study descriptions 113 

The planting density trial (EP571) was established along low elevations ( < 300 m) at seven locations 114 

in the Coastal Western Hemlock very wet maritime subzone (CWHvm; Green and Klinka, 1994) of western 115 
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Vancouver Island (between Port Renfrew and Bamfield, B.C.), where mean annual precipitation averages 116 

almost 3400 mm (Table 1).  These areas supported old-growth forests before logging took place between 117 

1958 and 1960, and cutblocks were subsequently slashburned in 1961.  The study areas encompassed a 118 

wide range in soil nutrient and moisture regimes (Green and Klinka, 1994): steep, well-drained upland sites 119 

with poor to average nutrients; imperfectly-drained, nutrient-poor sites on modest slopes; steep, nutrient-120 

rich sites on base-rich colluvial material; and low-lying, nutrient-rich sites with seepage.  Soils were derived 121 

from glacial morainal, fluvial or colluvial deposits, with sandy loam to loam textures, moderate stone 122 

content and well defined Bf or Bfh horizons (Humo-Ferric or Ferro-Humic Podzols, respectively; Soil 123 

Classification Working Group, 1998).   124 

The four conifer species utilized in the study are native to the Pacific Northwest: western hemlock 125 

(Tsuga heterophylla [Raf.] Sarg.), Sitka spruce (Picea sitchensis [Bong.] Carr.), coastal Douglas-fir 126 

(Pseudotsuga menziesii var. menziesii [Mirb.] Franco), and western redcedar (Thuja plicata Donn ex D. Don 127 

in Lamb.).  Single seedlots for each species were collected from the CWHvm on Vancouver Island and 128 

planted as 2+0 bareroot stock in April of 1962 (Omule, 1988).  The three planting density treatments were 129 

2.7 × 2.7 m (1329 stems ha-1), 3.7 × 3.7 m (748 stems ha-1), and 4.6 × 4.6 m (479 stems ha-1).  Each plot 130 

consisted of 81 trees planted in rows of 9, with the inner 7 × 7 rows (49 trees) tagged for remeasurement.  131 

Plot size ranged proportionally with planting density (0.037, 0.066, and 0.102 ha, respectively).  All four 132 

conifer species were planted at every site, but the density treatment was not fully replicated across the 133 

study installations; San Juan and Branch 136 had only the 2.7 m spacing (n = 4), while WC1000 lacked the 134 

4.6 m spacing (n = 8; Table 1).   135 

2.2 Soil and tree measures 136 

Individual tree heights and diameters at 1.3 m were measured most recently in 2014 (52 years in 137 

age).  In May of 2018 we sampled the upper soil profile for chemical properties mirroring the methodology 138 

of Kranabetter et al. (2019).  Forest floors were cut and removed over a 10 cm diameter area to the mineral 139 
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soil interface, and the forest floor depth noted at each microsite.  Mineral soils were sampled to a 20 cm 140 

depth with a stony soil auger.  Subsamples from 12 random microsites were composited into 3 forest floor 141 

and 3 mineral soil samples per plot (an occasional plot had very thin forest floors [< 1 cm] so in those cases 142 

we took only one or two bulked samples).  Soils were air-dried, ground and sieved to 2 mm for chemical 143 

analysis.  Foliar samples were collected at the end of the growing season (mid-November 2018) by 144 

searching each plot for fresh branches that had broken off during recent storms.  We strove to obtain 145 

needles from current year foliage off at least 12 separate branches and combined these into 3 samples per 146 

plot.  Foliar samples were oven-dried at 60° C for 24 hours and then ground for nutrient analysis.   147 

Total C and N concentrations of soil and foliage were measured using combustion elemental 148 

analysis with a Fisons/Carlo-Erba NA-1500 NCS analyzer (Thermo Fisher Scientific, Waltham, MA) (Carter 149 

and Gregorich, 2008).  Mineral soil and forest floors were finely ground to < 0.15 mm (100 mesh sieve) 150 

before combustion analysis.  Total P (Pt = inorganic Pi + organic Po) of mineral soils and forest floors was 151 

determined by an ignition method using sulfuric acid and an UV/visible spectrophotometer (O’Halloran and 152 

Cade-Menum, 2008).  Foliar P was determined by ICP-Atomic Emission Spectroscopy (Teledyne Leeman 153 

Labs, Hudson, NH) following microwave digestion.   154 

2.3 Statistics 155 

 Element ratios (C:N, C:Po and N:Po as molar ratios) were determined on each soil subsample and 156 

then averaged by plot for statistical analysis.  The covariation among average concentrations of C, N, Po and 157 

their element ratios was determined by pair-wise Pearson correlation coefficients (SAS Institute Inc., 2014).  158 

Conifer productivity was assessed by stand basal area (m2 ha-1 of live trees in 2014).  Scaling factors in the 159 

conversion to hectares (to account for differences in plot size) were 27.1 for 2.7 m spacing, 15.3 for 3.7 m 160 

spacing, and 9.8 for 4.6 m spacing. 161 

 The experimental treatment effects (Species and Spacing) on soil nutrient concentrations, forest 162 

floor depth, stand basal area and stocking (stems ha-1) were tested by fitting separate linear mixed effect 163 
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models in SAS (Mixed Procedure, Method=REML) (SAS Institute 2014), with Site set as a random effect.  We 164 

examined the relationships between stand basal area and soils by including each element ratio as a single 165 

continuous variable in the model, along with the full set of interactions.  The interaction terms Spacing × 166 

Soil and Species × Spacing × Soil were consistently nonsignificant for all soil variables tested, so the final 167 

models were refitted with these terms removed.  Goodness of fit for the model was evaluated by the F 168 

statistic of each parameter, as well as by the lowest overall model Akaike information criterion (AIC).  169 

Model outputs were also assessed graphically by plotting the observed dependent variable versus predicted 170 

values to ensure a relationship close to 1:1.  Foliar N %, P % and N:P in relation to Species, Spacing and soil 171 

element ratios were examined in the same manner but the final models were refitted without Species × 172 

Spacing, Spacing × Soil and Species × Spacing × Soil interaction terms as they were consistently 173 

nonsignificant for all soil variables tested.  174 

4 Results 175 

4.1 Soil nutrient concentrations and resource stoichiometry by substrate 176 

We found a considerable range in nutrient concentrations (e.g., 0.15-0.60 % N; Table 1) and strong, 177 

positive correlations among C, N, and Po for mineral soils (Pearson r > 0.7) across these temperate rainforest 178 

sites (Table 2, Fig 1).  Inorganic Pi concentrations of mineral soils were relatively limited, often < 200 mg kg-179 

1, which was substantially less than the contribution of Po to total P for a majority of plots (53 of 64 plots 180 

had Po > 70 % of Pt).  In addition to limited Pi, the extent of soil podzolization was reflected by typically low 181 

pH and elevated concentrations of exchangeable Al and Fe (Table 1).  Forest floors averaged 5.5 cm in 182 

depth (SE 0.6) overall, and displayed a narrower range in C (31 – 55 %C, average = 46 % C [SE 0.7]) but also 183 

exhibited a significant positive correlation between N and Po concentrations (Table 2).  Similar to mineral 184 

substrates, the concentrations of inorganic Pi (average 110 mg kg-1 [SE 5.8]) were uniformly low in forest 185 

floors, in contrast to Po (average 970 mg kg-1 [SE 71]), and consequently contributed only a small proportion 186 

of total P (Po ~ 90 % of Pt in forest floors).   187 
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C:N ratios of the mineral soils became narrower (declining from 44 to 23) with increasing % C (r = -188 

0.48; Fig. 2a), similar to C:Po (range approx. 300-1200; r = -0.36) (Table 2).  In contrast, C:N of forest floors 189 

widened with increasing % C (r = 0.51; Fig. 2b) but nevertheless C:N of both substrates were well aligned 190 

across sites (r = 0.85, p < 0.001; Fig. 3a).  The same symmetry in element ratios between substrates was 191 

found with C:Po (r = 0.78, p < 0.001) and, to a lesser degree, N:Po (r = 0.58, p < 0.001) (Fig. 3b,c).  In all cases 192 

the relationships in element ratios were not 1:1 as the organic horizons were less concentrated than 193 

mineral soils (e.g., a forest floor C:N of 40 would be matched with a mineral soil C:N of 30, on average; Fig. 194 

3a).  Lastly, there was typically a high degree of correlation (r > 0.7) in element ratios within a substrate, 195 

such as C:N vs. C:Po, for both mineral soils and forest floors (Table 2).  196 

At this juncture in plantation age (52 years) we found no evidence that conifer species or planting 197 

density had an effect on mineral soil nutrient concentrations or ratios (for Species, p = 0.99 for C:N, p = 0.48 198 

for C:Po, and p = 0.35 for N:Po; and for Spacing, p = 0.61 for C:N, p = 0.65 for C:Po, and p = 0.73 for N:Po).  199 

There was, however, a slight difference detected in N % of forest floors with Species (p = 0.034).  Forest 200 

floor N concentration under Douglas-fir averaged 1.52 % N (SE 0.06), which was slightly greater than the 201 

other three species (combined average 1.35 % N), although forest floors also tended to be thinner under 202 

Douglas-fir (4.7 cm [SE 0.8], on average, compared to 5.9 cm for the other three species; p = 0.13).  Despite 203 

the modification in N concentrations under Douglas-fir, this Species effect did not extend to element ratios 204 

of forest floors (for Species, p = 0.30 for C:N, p = 0.97 for C:Po, and p = 0.53 for N:Po; and for Spacing, p = 205 

0.25 for C:N, p = 0.42 for C:Po, and p = 0.25 for N:Po).   206 

4.2 Stand productivity in relation to soil resource stoichiometry 207 

 Stand density (stems ha-1) in 2014 was well aligned with initial planting spacing, and there were 208 

significant differences among conifer species in stocking (Supplemental. Fig. 1).  Western redcedar had the 209 

least mortality (average 80 % survival), followed by Sitka spruce (76 %), western hemlock (71 %) and then 210 

Douglas-fir (65 %).  With the original study design we could only detect a significant effect of Spacing on 211 
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stand basal area (2.7 m Spacing = 70 m2 ha-1, 3.7 m = 61 m2 ha-1, and 4.6 m = 53 m2 ha-1, on average) (Table 212 

3).  Including a soil element ratio of either substrate as a covariate in the analysis provided further details 213 

on Species response, particularly with C:N (Table 3).  Stand basal area was well aligned with mineral soil and 214 

forest floor C:N for all four species, with a significant species interaction due to the sharper gains in Sitka 215 

spruce basal area with decreasing C:N (Fig. 4a, b).  Soil C:Po and N:Po were also mostly significant covariates 216 

in the analysis of basal area, but neither ratio invoked the same degree of Species response (i.e., lower F 217 

values) nor significant Species × Soil interactions, and both models had poorer AIC scores than C:N (Table 218 

3).  For comparison we also tested C:Pt and N:Pt of each substrate against basal area but found virtually 219 

identical model outputs as C:Po and N:Po (data not shown). 220 

4.3 Foliar nutrition in relation to soil resource stoichiometry 221 

 Foliage collections were not entirely successful as a few plots, particularly under Sitka spruce, had 222 

insufficient branches to obtain three composite subsamples (n = 167 from a target of 192 subsamples, and 223 

with 2 spruce plots removed from the analysis).  Despite this more limited data set we were able to 224 

demonstrate an overall gain in foliar N % with declining soil C:N ratio, both for mineral and forest floor 225 

substrates, as well as a significant difference in foliar N % among Species due to the enhanced nutrition of 226 

Sitka spruce (Table 4; Fig. 5a).  In contrast, there was no relationship between foliar P % and C:Po ratio for 227 

either substrate (Table 4, Fig. 5b).  The better predictor of foliar P % was instead the concentration of Pi in 228 

soils, with again significant differences among Species largely due to Sitka spruce (Table 4).  We also tested 229 

soil Pt and Po concentrations in relation to foliar P % but neither of these attributes were significant (for Pt, p 230 

= 0.41 for forest floors and p = 0.12 for mineral soil; for Po, p = 0.94 for mineral soil; p = 0.61 for forest 231 

floors).  Foliar N:P ratios across the plots were for the most part greater than a proposed threshold of 16 (to 232 

delineate N-only deficiencies; Güsewell, 2004), averaging 19.5 (SE 0.8) for western redcedar, 18.2 (SE 0.8) 233 

for Douglas-fir, 20.6 (SE 0.8) for western hemlock, and 17.4 (SE 1.1) for Sitka spruce.  We were unable to 234 

find a significant relationship between foliar N:P and soil N:Po for either substrate (Table 4). 235 
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5 Discussion 236 

Our results provide further details on baseline nutrition and resource stoichiometry for soils of 237 

perhumid rainforests along the southwest coast of British Columbia.  Soil C and N regimes were at times 238 

very high (up to 12 % C and 0.6 % N for mineral soil), as has been reported previously across this region 239 

(Carpenter et al., 2014; Kranabetter, 2019; McNichol et al., 2019), while Pi was for the most part notably 240 

limited (< 200 mg kg-1) in comparison to less-weathered soils on the drier east side of Vancouver Island 241 

(Kranabetter et al., 2019).  The intense rainfall, acidic leachate (from coniferous vegetation), and, at some 242 

sites, possible NO3
- losses (Perakis et al,. 2013) have combined to reduce soil pH and enhance the sorption 243 

of Pi with reactive (Fe and Al oxides) soil components (a sink-driven P limitation; Vitousek et al., 2010).  244 

Some differences in parent materials (e.g., colluvial slope, fluvial terrace, morainal till) may also have 245 

contributed to the inherent range in P content of these soils (Kranabetter and Banner, 2000).  The high 246 

degree of positive correlations in C, N and Po concentrations for mineral soils (and between N and Po for 247 

forest floors) was consistent with coniferous forests in Oregon (Perakis et al., 2013) and global datasets of 248 

soil organic matter (Tipping et al., 2016).  Somewhat surprisingly we did not find evidence for decoupling of 249 

Po from organic matter as suggested by Yang and Post (2011) for highly-weathered soils.  Nevertheless, the 250 

modest to high deficiencies in foliar P (0.10-0.15 %) for a large number of stands1 and elevated range in 251 

foliar N:P (16-25) suggests these perhumid rainforests were often limited by N and P together or, in some 252 

stands, possibly P alone (Carter, 1992; Güsewell, 2004).  The dynamics and availability of soil P to trees, 253 

particularly Po, is challenging to reconcile given such strong and consistent patterns in soil organic matter 254 

quality.  255 

The clear relationship between mineral soil and forest floor C:N with stand productivity and foliar N 256 

% was consistent with many other biomes and affirms the widely recognized relationship of increasing N 257 

availability with declining soil C:N (Booth et al., 2005).  In contrast, C:Po and N:Po were less aligned with 258 

                                                           
1 note that Douglas-fir, western hemlock and western redcedar averaged 0.20% P on less-weathered soils of eastern 
Vancouver Island (Kranabetter et al. 2019 and unpub. data) 
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species growth response (and likely only significant as a surrogate for C:N) and not a significant predictor of 259 

foliar P %, despite the expectation of positive correlations in net N and P mineralization rates (Heuck and 260 

Spohn, 2016).  Estimates of a critical C:Po for gross P mineralization of leaf litter range from 1400-1800 261 

(Mooshammer et al., 2012; Heuck and Spohn, 2016), but thresholds for forest floor horizons and mineral 262 

soil are likely much lower (perhaps < 500; Saggar et al., 1998; Heuck and Spohn, 2016).  The substrate 263 

distinction is important as very few of our study sites had C:Po ratios < 500, suggesting pervasive, low 264 

quality organic matter in regards to P.  Furthermore, the element ratios of saprotrophic fungi, as key 265 

decomposers, in these perhumid rainforests averaged 120 and 10 for C:P and C:N, respectively (Kranabetter 266 

et al., 2019), which when compared to soil organic matter would indicate a greater elemental imbalance for 267 

P, especially in forest floors (Mooshammer et al., 2014).  The biotic (microbes, plants) competition for P is 268 

also very likely exacerbated by abiotic competition for phosphate (PO4
-) via sorption to Fe and Al oxides, 269 

much more so than would be present for NH4
+ or NO3

- (Olander and Vitousek, 2004).  A greater sink 270 

strength via immobilization and sorption for PO4
- would require conifers to bypass mineralization of P by 271 

decomposers to some degree and instead access organic P more directly for uptake.  A concurrent study of 272 

extracellular enzyme activity associated with ECM roots of Douglas-fir has revealed substantial increases in 273 

P-acquiring enzymes (J. Meeds, pers. comm.) that are likely acting upon the orthophosphate monoesters 274 

and diesters of organic P (Cade-Menum et al., 2000; Preston and Trofymow, 2000).  Despite the expected 275 

contribution of Po to forest nutrition, however, we found it more effective to gauge P availability through 276 

soil Pi concentrations (as the only significant correlate with foliar P %), but other methods may prove to be 277 

more sensitive as a measure of plant-available Po (DeLuca et al., 2015; Darch et al., 2016).   278 

One unique aspect of soil organic matter found here was a decrease in mineral soil C:N and C:Po 279 

ratios with increasing soil C % (Fig 2a), in contrast to the inverse relationships described by Tipping et al. 280 

(2016).  This may reflect the significant legacy of N-fixing red alder (Alnus rubra) in coastal forest 281 

ecosystems, which has been found to promote soil C sequestration and P mobilization while simultaneously 282 
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adding high quality (low C:N) litter (Binkley, 2005; Perakis and Pett-Ridge, 2019).  A second key source of N-283 

rich litter could be from epiphytic cyanolichens and cyanobacteria-bryophyte associations (Antoine, 2004; 284 

Lindo and Whiteley, 2011).  Canopy lichens and bryophytes are noteworthy in low-frequency disturbance 285 

ecosystems such as rainforests because they produce a steady input of N while growing independently of 286 

the soil environment (Menge and Hedin, 2009).  Red alder, in comparison, is an early-seral species that can 287 

be hindered in its establishment and vigour by low Pi availability (Brown et al., 2011; Kranabetter et al., 288 

2013).  Hedin et al. (2009) described a similar N paradox in tropical forests, and proposed N-fixing epiphytes 289 

as one mechanism that allows soil N regimes to increase despite soil Pi deficiencies or physiological down-290 

regulation of N-fixation in high soil N environments.   291 

The more significant differences in species productivity in relation to soil C:N was among the ECM 292 

species rather than solely between mycorrhizal types.  Western hemlock and Douglas-fir had the most 293 

limited increase in basal area with declining C:N, a finding that was similar for these species in correlations 294 

of site index with organic matter quality across a broader region of the US northwest (Edmonds and 295 

Chappel, 2004).  These two conifers would be considered relatively stress-tolerant under the C-S-R model 296 

(Hodgson et al., 1999) as their growth on high C:N soils outperformed that of either spruce or cedar.  Sitka 297 

spruce, in contrast, would clearly be a strong competitor as exemplified by the impressive linear increase in 298 

biomass with declining soil C:N.  Perakis and Sinkhorn (2011) found coastal Douglas-fir productivity 299 

plateaued with increasing N mineralization rates, but this relationship with N supply may be species-300 

dependent and not necessarily apply to Sitka spruce.  A possible functional trait related to this growth 301 

response is the low capacity of ECM roots of Douglas-fir to maximize uptake of NO3
-, as would be in plentiful 302 

supply on these richer soils (Prescott et al., 2000b; Perakis et al., 2006), but whether spruce ECM roots 303 

would perform any differently has not been established (Boczulak et al., 2014; Hawkins and Kranabetter, 304 

2017).  As an aside, we noted some naturally-regenerated Abies amabilis within the study areas that had 305 

the same girth as Sitka spruce, so it is likely Abies would be an equally competitive member of these 306 
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rainforest ecosystems.  Western redcedar as the only ARB tree species in the trial was intermediate in 307 

growth response to soil C:N, and displayed no particular advantage in foliar N % or P % over the ECM 308 

conifers.  Redcedar is recognized to have a wide ecological amplitude, from highly productive to very 309 

nutrient poor or wet sites (Antos et al., 2016), and so would fit well within a generalist or intermediate C-S 310 

strategy.  These contrasting patterns in productivity emphasize a diversity of traits related to edaphic niches 311 

within mycorrhizal guilds rather than a simple dichotomy in the distribution of ARB and ECM trees between 312 

N-rich and N-poor soils (Koele et al., 2012; Dickie et al., 2014).   313 

After five decades the possibility of tree species effects on soil nutritional status is also worth 314 

considering.  Enhanced N inputs via foliar litter are considered a positive reinforcement in sustaining soil 315 

fertility (Prescott, 2002), which would be consistent with the overall trend in foliar N % across this 316 

productivity gradient.  The small difference in forest floor N concentrations under Douglas-fir may reflect 317 

slightly better litter quality (lower lignin content) and potentially faster decomposition rates for this species 318 

(Vesterdal and Raulund-Rasmussen, 1998; Thomas and Prescott, 2000).  Overall, however, there were no 319 

clear differences in element ratios of either forest floors or mineral soils by tree species, which leads us to 320 

conclude these conifers lacked substantial enough differences in leaf or root litter to have more profoundly 321 

and consistently diverged from inherent soil conditions.  The glaciated landscape along Vancouver Island 322 

has been in the current iteration of temperate perhumid rainforests for at least 7500 years (Brown and 323 

Hebda, 2002; Lacourse, 2005), during which time the various site drivers (e.g., drainage, slope, soil 324 

mineralogy, vegetation) have collectively produced the very wide disparity in soil fertility found today.  It 325 

would undoubtedly take a very sizable influence of tree species on C, N or P cycling to overcome the inertia 326 

of site type in such complex terrain (Prescott et al., 2000b).  For example, an ecologically minor shift in 327 

forest floor C:N from 50 to 40 (equivalent to an average increase of foliar N from 1.17 % to 1.23 %; Fig. 5a), 328 

would require a gain of approximately 200 kg ha-1 in N (based on a depth of 5 cm and bulk density of 0.14 g 329 

cm-3), which would seem implausible for coniferous stands to confer in mere decades.  In addition, much of 330 
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the focus on tree species effects has focused on surface organic horizons, but given the symmetry in 331 

element ratios between mineral and forest floor substrates we would argue that a true tree species effect 332 

should extend throughout the rooting zone of the soil profile.  333 

With mean annual precipitation near 3500 mm, these perhumid rainforests are at the extreme 334 

range in rainfall for the Pacific west coast (Carpenter et al., 2014).  The evidence for P constraints outlined 335 

in this trial have been substantiated by fertilizer studies along northern Vancouver Island (Blevins et al., 336 

2006; Negrave et al., 2007), but other areas in the Pacific Northwest have shown more variation in growth 337 

response to added P (Radwan et al., 1991; Mainwaring et al. 2014).  Lower precipitation levels or 338 

differences in soil mineralogy could mediate rates of soil podzolization and reductions in Pi so the full 339 

regional extent of these presumed P deficiencies should be examined and tested more thoroughly.  We 340 

expected some utility in soil N:Po as a measure of forest productivity (Wardle et al., 2004) but it is possible 341 

the mismatch in element thresholds for N and Po turnover, as discussed above, reduced the efficacy of this 342 

index.  Phosphorus deficiencies are also relevant in the noted nutrient exchange between marine and 343 

terrestrial environments through anadromous salmon biomass (Cederholm et al., 1999).  Our results 344 

support the likelihood that both salmon-derived N and P contribute to alleviating nutrient limitations of 345 

Sitka spruce on riparian sites of the Pacific west coast (Reimchen and Arbellay, 2019).   346 

6 Conclusions 347 

 Quantifying the fundamental relationships between soil element ratios and conifer species 348 

productivity was facilitated in this study by the planting of single provenances at controlled densities, 349 

alongside a uniform macroclimate and narrow elevation band among plot locales.  Soil organic matter 350 

content of perhumid rainforests was often high and displayed strong positive correlations in soil C, N and Po 351 

concentrations.  Inorganic P was generally in low supply, reflecting soil podzolization processes, and 352 

contributed a relatively minor proportion of total P.  Element ratios of C:N and C:Po were well correlated in 353 

forest floors and mineral soils, yet only C:N was an effective measure of forest productivity and foliar 354 
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nutrition.  High C:Po ratios (as much as 3000) may reflect a stronger immobilization sink for P than N, which, 355 

along with ongoing sorption of PO4
-, could limit the capacity of organic P turnover to meet tree 356 

requirements.  The interplay of conifers and soils after five decades suggests species growth response to 357 

inherent soil C:N was more intrinsic to ecosystem productivity than any reciprocal effects of tree species on 358 

soil resources.  The conifers with ectomycorrhizal fungi had widely diverging responses in basal area over 359 

the N gradient, illustrating the extent of both competitive (Picea sitchensis) and stress-tolerant (Tsuga 360 

heterophylla, Pseudotsuga menziesii) traits for these tree species.  The chemical nature and availability of 361 

soil P to trees, particularly as Po, deserves further investigation as many of these perhumid rainforests were 362 

co-limited by both N and P, or, in some stands, possibly P alone.   363 

  364 
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Figure 1. Mineral soil (0-20 cm) N and Po concentrations in relation to mineral soil C across the study sites. 590 

Figure 2. Trends in C:N ratios of a) mineral soil (0-20 cm) and b) forest floors in relation to substrate C 591 

concentrations. 592 

Figure 3. Correlation in resource stoichiometry for a) C:N ratio, b) C:Po ratio, and c) N:Po ratio between 593 

mineral soil and forest floor substrates. 594 

Figure 4. a) Basal area by Species in relation to mineral soil C:N (all planting densities included), and b) linear 595 

regressions between stand basal area and mineral soil C:N, fitted by Species and Species × Soil interactions 596 

(model output averaged across planting density).  Slope of the C:N regression was ranked highest for Sitka 597 

spruce (Ss; -3.40), followed by western redcedar (Cw; -1.67), Douglas-fir (Fd; -0.84), and western hemlock 598 

(Hw; -0.70).   599 

Figure 5. a) Foliar N (%) in relation to forest floor C:N ratio, and b) foliar P (%) in relation to forest floor C:Po 600 

ratio.  Western redcedar = Cw; Douglas-fir = Fd; western hemlock = Hw; Sitka spruce = Ss. 601 
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Table 2. Pearson correlation r and p values (in brackets, < 0.05 in bold) among total C, N, Po concentrations 605 

and associated element ratios of the mineral soil (0-20 cm) and forest floor. 606 

 N Po C:N C:Po N:Po 

Mineral soil      

C 0.92 (< 0.001) 0.71 (< 0.001) -0.48 (< 0.001) -0.36 (0.004) -0.21 (0.101) 

N - 0.87 (< 0.001) -0.75 (< 0.001) -0.59 (< 0.001) -0.38 (0.002) 

Po  - -0.77 (< 0.001) -0.82 (< 0.001) -0.73 (< 0.001) 

C:N   - 0.81 (< 0.001) 0.55 (0.001) 

C:Po    - 0.93 (< 0.001) 

Forest floor      

C -0.01 (0.91) -0.32 (0.011) 0.51 (< 0.001) 0.61 (< 0.001) 0.52 (< 0.001) 

N - 0.74 (< 0.001) -0.84 (< 0.001) -0.59 (< 0.001) -0.34 (0.006) 

Po  - -0.71 (< 0.001) -0.84 (< 0.001) -0.82 (< 0.001) 

C:N   - 0.77 (< 0.001) 0.48 (< 0.001) 

C:Po    - 0.91 (< 0.001) 

 607 
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Table 4. Conifer species foliar nitrogen (N) and phosphorus (P) concentrations and N:P ratio in relation to612 

planting density (1329, 748 and 479 stems ha-1) and mineral soil (0-20 cm) or forest floor resource 613 

stoichiometry (p values < 0.05 in bold).  614 

Mineral soil Forest floor 

Df F value p value F value p value 

Foliar N% 

Species 3 9.32 < 0.001 7.72 0.001 

Spacing 2 0.39 0.677 0.97 0.387 

Soil C:N 1 8.13 0.006 19.16 < 0.001 

Foliar P% 

Species 3 12.56 < 0.001 11.94 < 0.001 

Spacing 2 0.32 0.729 0.36 0.703 

Soil C:Po 1 2.00 0.164 0.01 0.984 

Foliar P% 

Species 3 11.00 < 0.001 12.59 < 0.001 

Spacing 2 0.91 0.408 0.70 0.503 

Soil Pi 1 13.45 0.001 6.76 0.012 

Foliar N:P 

Species 3 5.02 0.004 4.21 0.010 

Spacing 2 1.15 0.324 1.10 0.340 

Soil N:Po 1 2.10 0.154 0.61 0.439 

615 
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